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ABSTRACT:—Prediction of the content of water, oil, and pro-
tein in rape and mustard seed was examined by a combination
of low-field 1H nuclear magnetic resonance (LF-NMR) and
chemometrics, enabling utilization of the entire relaxation
curves in the data evaluation. To increase the range of relative
contents, the untreated seeds were wetted and dried; each treat-
ment was followed by NMR analysis. The chemometric results
are compared to traditional evaluation by multiexponential fit-
ting of the relaxation curves. For this purpose, a new JackKnife
validation procedure was developed to evaluate the number of
exponential components objectively. Classification of the two
kinds of seeds was easily performed by LF-NMR. Partial least
squares regression to oil content in untreated rape and mustard
seed yielded models with correlation coefficients of r = 0.88 and
0.89 with root mean square error of cross-validation (RMSECV)
of 0.84 and 0.45, respectively. The rapeseed model was based
on one component, whereas the mustard seed model was based
on two components. If the seeds were dried, the predictive per-
formance improved to r = 0.98 and RMSECV = 0.36 for rape-
seed and to r = 0.95 and RMSECV = 0.38 for mustard seed.
Upon drying, prediction of protein content in mustard seed im-
proved, whereas the prediction of protein for rapeseed deterio-
rated. Global models, including the combination of untreated,
wet, and dry seeds, all resulted in a robust and good predictive
performance with RMSECV in the range 0.8–1.3% to water, oil,
and protein content. It was demonstrated that drying the seeds
to simultaneously determine water and oil content was not nec-
essary when chemometrics was applied on the relaxation curves.
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Rapid on-line measurements are of great interest in many indus-
tries, as they enable better control of production and quality.
One method that shows promising results for fast on-line/at-line

measurements, especially in the food industry, is low-field 1H
nuclear magnetic resonance spectroscopy (LF-NMR). The most
common type of NMR is proton NMR, which is based on the
fact that many foodstuffs are proton-rich, with protons origi-
nating, e.g., from water, fat, carbohydrates, and proteins. The
advantages of LF-NMR, compared to other spectroscopic
methods, are that it is noninvasive and nondestructive and
that, perhaps most importantly, it is a bulk measure.

One of the early applications of LF-NMR was determination
of fat content in different plant seeds by simply making a linear
regression model that correlates the initial signal intensity or a
ratio between two points (t11 and t70) of the NMR free induction
decay (FID) relaxation signal to the reference fat measurement
(1). This procedure requires that the seed be dried before mea-
surement, which is destructive as well as time-consuming. The
next step in method development was to use a Hahn spin-echo
(2) and perform a similar linear regression calibration based on
a ratio between the initial amplitude and the spin-echo ampli-
tude (3). The introduction of the spin-echo made it possible to
determine the oil and water contents in oilseeds simultaneously;
however, the samples still required a low moisture content
(3–6). Gambhir (7) published a review of the application of LF-
NMR to oilseeds, and a number of international standards have
been published (8–10).

With new and fast bench-top NMR hardware it has be-
come possible to acquire entire relaxation curves. A reason-
able assumption would thus be that calibration based on the
entire relaxation decay would reveal more information than
calibrations based only on a single or a few points, particu-
larly when attempting to estimate more components simulta-
neously, which is the aim of this work.

To handle the large amount of data points acquired, the tradi-
tional univariate linear or multiple linear regression methods no
longer apply and, furthermore, LF-NMR relaxation data are
highly co-linear (11), which is a problem for most analytical
methods. Multivariate data analysis techniques, applied in
chemistry since the 1970s under the name of chemometrics, in-
clude algorithms that easily handle both of the above-mentioned
problems (12). A series of experiments were initiated to evalu-
ate LF-NMR data with chemometrics for simultaneous deter-
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mination of multiple components in plant oilseeds. Tkachuk
(13) used near-infrared reflectance (NIR) spectroscopy, includ-
ing spectral information from several chemical bonds, to deter-
mine the amount of oil and protein in whole rapeseed. Velasco
et al. (14) applied NIR to intact samples of Ethiopian mustard
seed and were able to predict the fatty acid composition in the
seed with good precision. However, resolution of molecular
composition by NMR can only be achieved when using the
more costly high-resolution NMR equipment. LF-NMR focuses
on one major functional group, namely the protons, and their
mobility. Now the question is whether LF-NMR can distinguish
between different kinds of protons, e.g., those bound in free
water or in more structured water, or even protons attached to
oil, proteins, and carbohydrates for estimation of these fractions.
Owing to its specificity in detecting protons, and its ability to
measure bulk and not surface properties, LF-NMR could have
an advantage compared to NIR. 

MATERIALS AND METHODS

Samples and preparation. A sample set of 17 varieties of winter
mustard and 20 varieties of spring rape was used for the experi-
ment. Approximately 5 g of seed was weighed for each sample,
and the weight was noted for later mass normalization of the ac-
quired relaxation curves. After measurement of the untreated
seeds, the seeds were stored in a desiccator over water for 10 d
at 20°C for the seeds to absorb water. At this point, a new NMR
measurement was performed, after which the seeds were dried
overnight at 105°C, and a third NMR analysis was carried out.
The contents of water, oil, and protein were calculated relative
to sample mass for all three conditions to increase the relative
range of contents. The NMR analysis was performed on the in-
tact seeds at 25°C, and temperature equilibration before analysis
was performed overnight in sealed NMR glass tubes.

NMR measurements. All NMR measurements were per-
formed on a Maran bench-top pulsed NMR analyzer (Reso-
nance Instruments, Witney, United Kingdom), equipped with a
high-quality permanent magnet, operating at 23.2 MHz and
with an 18-mm variable temperature probe head. The NMR
equipment was controlled from a standard personal computer.
An inversion recovery [INVREC (15)] experiment was per-
formed where 22 “T1-weights” (inversion delays: 0.1, 1, 10, 50,
60, 70, 80, 90, 100, 110, 120, 150, 200, 300, 400, 500, 600, 700,
850, 1000, 1200, and 1500 ms) were used. Furthermore, a FID-
CPMG [Carr-Purcell-Meiboom-Gill (16,17)] pulse experiment
was used, where the number of FID points is automatically cal-
culated, depending on the selected tau and dwell time (distance
between points). In this experiment, a tau value of 100 µs was
used, allowing acquisition of 165 FID points with a dwell time
of 0.5 µs acquired along with 4096 echoes in the CPMG part of
the experiment. Only even-numbered echoes were used for sub-
sequent data analysis. The sample relaxation delay was set to 2
s, and eight scans were accumulated for noise reduction.

Chemical reference data. The total water content of the
seed was determined by drying the seeds overnight at 105°C.
Replicates were made, and a replication error of 1 g/kg sam-

ple weight was accepted. The oil content was determined by
the Soxhlet method (18,19). Samples of approximately 1 g
were analyzed, and an error of replicates of 4 g/kg was ac-
cepted. Protein content was determined as nitrogen by Kjel-
dahl analysis (20) and converted to protein equivalents. Sam-
ples of approximately 1 g were analyzed, and an error of
replicates of 2% was accepted.

Chemometrics. One of the main advantages of chemo-
metric tools is that they are able to deal with spectral infor-
mation that contains multivariate co-linear data, such as NMR
relaxation data, by reducing data into a few functional or la-
tent factors displayed in a graphical interface. In this work,
principal component analysis (PCA) is applied to explore the
origin of variation in the relaxation curves (11). Partial least
squares regression (PLSR) is used to correlate the NMR re-
laxation data to chemical reference data, generating a multi-
variate linear regression model. For further in-depth descrip-
tions of the use of PCA and PLSR we refer to other publica-
tions (21–23). All results reported are based on full cross
(leave one out) validation (24). For reasons of comparison,
global PLSR models that combined rape and mustard seeds
were double-checked by performing cross-validation using
two segments (rape and mustard), and global PLSR models
that combined the three treatments were double-checked by
performing cross-validation using three segments (untreated,
wet, and dry). These results are generally not reported.

One of the few basic requirements for using PCA and PLS
is that the data must be bi-linear. For NMR relaxation data
this implies that, for a given time, the signal contributions
from different protons must be additive, which in turn re-
quires that instrument settings, such as receiver gain, must be
kept fixed throughout the entire experiment and not optimally
set for each individual sample.

Exponential fitting. To what extent exponential fitting can
be used to describe compartmentalization in a sample, based
on the characteristic relaxation times found in an exponential
fit of the NMR relaxation data, has been treated elsewhere
(25). Nevertheless, the amplitudes and relaxation time con-
stants found in the exponential fit do describe some charac-
teristics of the sample, and fitting is thus performed in this
work to report changes in relaxation time constants in con-
nection with the different treatments and to compare univari-
ate data analysis with PLSR. For a further description of the
fitting procedure, see Bechmann et al. (11).

Programs. All relaxation data were saved as binary quadra-
ture data from the LF-NMR instrument. These files were im-
ported to Matlab (The MathWorks Inc., Natick, MA) by an in-
house-written routine, converted to magnitude format or phase-
rotated as required, and then mass-normalized. The chemometric
data analysis was performed with The Unscrambler (Camo,
Trondheim, Norway). Exponential fitting was performed in Mat-
lab with in-house software (11) available on www.models.kvl.dk.

RESULTS AND DISCUSSION

The range of contents of water, oil, and protein in intact samples
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of the two kinds of seeds is not large, as shown in Table 1.  This
fact reduces the ability to model properly. Table 1 also lists in-
tercorrelation among the three components as well as smallest
and largest value, mean content, and standard deviation for ref-
erence data. The intercorrelation gives an indication of the ex-
tent to which a given model for, e.g., water is in fact based on
the water-proton content or is confounded with some other com-

ponent in the sample. A certain level of intercorrelation is ex-
pected (12) in biological samples, because water, oil, carbohy-
drates, and protein usually add up to approximately 100%.

Exponential fitting is performed on the acquired CPMG and
INVREC data. Generally, determination of the number of rele-
vant components poses a problem, as illustrated by Figure 1. The
left side of the figure shows the raw CPMG data plus the under-
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TABLE 1
Intercorrelations, r, and Contents of the Original Mustard Seed and Rapeseed Samples Used in the Experiment

Untreated Dry Untreated + Wet + Dry

Mustard seed Water Oil Protein Water Oil Protein Water Oil Protein

Intercorrelations (r)
Water 1. –0.64 0.47 1. −0.91 −0.95
Oil –0.64 1. –0.63 1. –0.52 –0.91 1. 0.80
Protein 0.47 –0.63 1. –0.52 1. –0.95 0.80 1.

Content (%) 1
Minimum 5.59 30.12 26.90 32. 28.49 0.00 26.83 23.81
Maximum 6.12 33.70 28.92 35.7 30.7 14.60 32.00 28.49
Mean 5.83 31.63 28.02 33.57 29.77 7.00 31.22 27.68
Std. dev. 0.15 1.04 0.56 1.08 0.66 6.32 2.35 1.98

Rapeseed
Intercorrelations (r)

Water 1. –0.78 0.59 1 –0.84 –0.78
Oil –0.78 1. –0.46 1. –0.70 –0.84 1. 0.45
Protein 0.59 –0.46 1. –0.70 1. −0.78 0.45 1.

Content (%)
Minimum 4.50 40.81 19.38 43.6 20.57 0.00 37.69 17.70
Maximum 5.65 48.17 23.05 50.7 24.22 13.93 50.70 24.22
Mean 5.03 44.76 20.80 47.16 21.92 5.96 44.33 20.61
Std. dev. 0.27 1.83 0.98 1.78 0.96 5.35 3.07 1.49

FIG. 1.  Plot resulting from the exponential fitting routine. The left side shows the raw data plotted along
with the underlying fitted exponential functions and indicators for the found time constants (vertical lines).
The right side of the figure shows the residuals of the mono-, bi-, and tri-exponential fit.
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lying fitted exponential functions extracted for one, two, and
three exponentials. The right side of the figure shows the corre-
sponding residuals, which usually form the basis for determin-
ing the appropriate number of components. Adding a new ex-
ponential component will always reduce the residual but with
the risk that overfitting will occur. To avoid this potential pit-
fall, we have implemented a segmented cross-validation [or
JackKnife resampling procedure (26)] routine for the expo-
nential fitting procedure. The basic principle for the cross-val-
idations is described in Figure 2, showing an example with
only three segments. In this approach, a one-component curve
fitting (calibration) is first performed on segments 2 and 3,
and the root mean square (RMS) error E1 on segment 1 is

recorded for validation. Then, the curve fitting is performed
on segments 1 and 3, and the RMS error E2 on segment 2 is
recorded for validation. Finally, the curve fitting is performed
on segments 1 and 2, and the RMS error E3 on segment 3 is
recorded for validation. By adding the RMS errors E1, E2,
and E3, we now have a validated measure of the goodness of
the fit to be compared with a corresponding two-component
model. The downside of this approach is that it is quite time-
consuming, as the number of fits needed to be calculated in-
creases linearly with the number of segments used. However,
it strongly improves the reliability of the selected number of
components and makes the choice objective. Another way of
determining the proper number of underlying latent factors is
to perform PCA on the raw data. This gives a good indication
of the dimension (rank) of the data set (matrix). 

Figure 3 shows an example of the decrease in summed
residual of fitted CPMG data for the rapeseed samples with
the three different treatments. The figure shows clearly that
the wet seeds require three components to properly describe
the data when compared to both untreated and dry seeds,
which require only two components. Three principal compo-
nents were also necessary to describe the data variation in a
PCA when the wet samples were included. This agreement
between PCA and JackKnife validation of the exponential fit-
ting procedure more than suggests that the water absorbed in
the seeds does not entirely enter the normal compartmental-
ization of water in seeds, but introduces a new T2 component.
A similar JackKnife/PCA analysis was performed on the
INVREC data and also consistently yielded two components
for the wet samples. This result may indicate that we have
fewer T1 components than T2 components or alternatively that
we have more scarce information on the T1 relaxation (4–6
parameters estimated from only 16 points). Table 2 reports an
average of the obtained results. Both bi- and tri-exponential
fitting was performed for all treatments, but only wet seeds
required fitting of three underlying T2 exponential curves. Cu-
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FIG. 2.  Schematic description of segmented cross-validation routine
used in the exponential fitting procedure. In this example three equal-
sized segments are used. E is the summed error (E = E1 + E2 + E3) re-
sulting from the individual steps; C = calibration; V = validation.

FIG. 3.  Reduction in summed residual as a function of increasing num-
ber of exponentials fitted. Clearly the wet seeds require one more expo-
nential in order to explain a sufficient level of the information.
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riously, the NMR relaxation of the wet seeds introduced a
new short T2 time constant denoted T20, which is significantly
faster than the time constants calculated in the two-compo-
nent cases (dry and untreated). Emergence of the new short
relaxation time constant upon adsorption of “very mobile”
water/moisture indicates that part of the water does not pene-
trate into the inner structures of the seeds, but perhaps is in a
state tightly bound to the surface structure of the seeds. A com-
parison of the two- versus three-component solutions for the wet
seeds clearly shows that the additional short component is re-
quired to yield relaxation times, T21 and T22, in the same range
as for the dry and untreated seeds. This fact supports the valid-
ity of our JackKnife model, as the two original components per-
sist; however, the physical origin of the short component re-

mains to be definitively assigned.
Figure 4 shows what we call the exponential JackKnife

plot [idea borrowed from Martens and Martens (27)], which
results from a segmented cross-validation with eight seg-
ments. The plot shows the result of a bi-exponential fit of an
untreated rapeseed sample where T21 (ms) is plotted against
T21 (ms). The asterisks (covered by point number 5) from
which all lines radiate show the relaxation times in the situa-
tion where the full relaxation profile is used and no validation
is performed. Each of the other points (1 to 8) shows the situ-
ation where that segment has been left out and the fitting per-
formed on the rest of the data. The plot shows that most in-
formation is stored in the initial part of the relaxation curve,
because leaving out the first segment has the largest influence
on the time constants found by the fit. The fact that most in-
formation is stored in the initial part of the relaxation curve
can be explained by the nature of exponential functions, be-
cause for a given component they contribute the maximum to
the initial part.

Figure 5A shows a global PCA based on INVREC, includ-
ing both kinds of seeds and all three kinds of treatment. The
first principal component (PC1) explains 90% of the variation
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TABLE 2
Mean Characteristic Time Constants for Bi- and Tri-exponential Fit of
CPMG and INVREC Relaxation Data

CPMG (ms) INVREC (ms)

T20 T21 T22 T11 T12

Mustard
Dry — 41.6 130 52 260
Untreated — 40.6 130 39 180
Wet 2.3 44.6 140 35 140
Weta — 5.6 90

Rape
Dry — 50.6 160 65 300
Untreated — 50.6 160 45 210
Wet 3.0 55.6 170 39 170
Weta — 16.6 120

aTwo-component fits of wet seeds not justified by the JackKnife validation.
CPMG, Carr-Purcell-Meiboom-Gill; INVREC, inversion recovery.

FIG. 4.  JackKnife plot resulting from a segmented cross-validation rou-
tine when performing exponential fit. It can be seen that the majority of
the information is stored in the first segment, resulting in the largest de-
viation from the full spectrum result if removed before fitting (thus used
for validation). The asterisk under point #5 represents the position of
the full spectrum fit.

T 2
2

(m
s)

T21 (ms)

FIG. 5.  Global principal component analysis based on (A) inversion re-
covery data and (B) Carr-Purcell-Meiboom-Gill data with both rape and
mustard seeds and the three different kinds of treatments (untreated, wet,
and dry) of the seeds. PC, principal component.
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and describes the three different treatments, whereas the sec-
ond principal component (PC2) explains the remaining 10%
of the variation, including the information needed for seed
classification. In Figure 5B, a global PCA for CPMG data is
shown; however, in this analysis PC1 (98%) distinguishes the
two kinds of seeds and PC2 (1%) mainly separates the wet
seeds from the untreated and dry seeds, the latter being mixed
up in one group. Including PC3 in the score plot does not en-
able further separation of the untreated and dry treatments. The
difference in the information acquired by the different pulse
experiments is quite interesting. It originates from the fact that
INVREC probes differences in the matrix physics (spin-lattice
relaxation), whereas CPMG probes differences in the protons’
mobility (spin-spin relaxation). Thus, water and oil contents
(not all oil is melted at the measurement temperature 25°C) are
most likely well reflected in the CPMG data.

The easy separation of the two varieties of seeds and the
different treatments implies that global models for distin-
guishing rape and mustard seed as a classification problem is
quite simple. Looking at the relaxation times reported in
Table 2, we can also clearly see the pattern of separation de-
scribed above by the PCA analysis. The T21 relaxation times
indicate especially that the water compartmentalization and
mobility in mustard and rapeseed are quite different.

PLSR prediction models are shown in Table 3 for a com-
bination of INVREC, FID, and CPMG data for untreated, dry
and untreated, wet and dry together as well as global models
(including both rape and mustard seeds). Almost all global
models show good performance owing to the large range of
contents in reference values. Prediction of oil content im-
proves by drying the seed, whereas the protein prediction is
ambiguous. Prediction models in which the three treatments
are combined show good performance, probably partly
owing to the enhanced range of contents. When using seg-
mented cross-validation for the global models in the PLSR,
as described in the Materials and Methods section, results

comparable to the full cross-validation results were obtained.
Generally, models for water and protein were slightly poorer,
whereas models for oil generally showed improvements.

The prediction of protein in either untreated or dried seed
is not satisfying. At present, it is not clear whether this fact
is due only to the low variation or the relatively large stan-
dard deviation of the reference method. The fact that the
models with the lowest correlation coefficients have the low-
est root mean square error of cross-validation (RMSECV) in-
dicates that variation in the reference material was not ade-
quate. A new experiment with a larger protein variation
should clarify this issue. We cannot, however, completely
rule out the possibility that the good global protein calibra-
tion is due to intercorrelations with water and oil contents.
However, in another application on water-holding capacity
in frozen cod, we were able to predict water-holding capac-
ity by using exactly the same approach with reasonable suc-
cess (r = 0.9) in a sample material where there was no corre-
lation between water-holding capacity and total water con-
tent. It is also indicated that the global model is not due to
major intercorrelations (Table 1).

Figure 6A is a plot of measured vs. predicted oil content
for a PLSR model of dried rapeseed using two components,
and Figure 6B shows the segmented cross-validated results
of the global model for all three treatments. In the latter, the
validation is performed as segmented (the three treatments)
cross-validation. By comparison with the full cross-validated
results reported in Table 3, we observe an almost identical
model with a slight improvement in the correlation coeffi-
cient, which indicates a sound model.

In conclusion, good prediction models were obtained for
water and oil, and it also appears possible to make a predic-
tion model for protein, if a sample material with more varia-
tion in protein content were collected. The results support the
idea of using the complete spectral information acquired
when analyzing a sample to perform the desired regression
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TABLE 3
Full Cross-Validation of PLSR Models Using Combined INVREC, FID, and CPMG Data at 25¡Ca

Untreated Dry Untreated + wet + dry

r RMSECV #PC r RMSECV #PC r RMSECV #PC

Rape
Water 0.90 0.12 1 0.98 1.00 2
Oil 0.88 0.84 1 0.98 0.36 2 0.97 0.77 2
Protein 0.81 0.57 3 0.73 0.61 1 0.86 0.72 2

Mustard
Water 0.60 0.12 2 0.98 1.14 2
Oil 0.89 0.45 2 0.95 0.38 2 0.94 0.75 2
Protein 0.62 0.43 2 0.70 0.42 2 0.91 0.81 2

Globalb

Water 0.94 0.15 1 0.98 1.27 2
Oil 0.99 0.92 1 0.99 0.71 1 0.99 0.99 2
Protein 0.99 0.63 1 0.99 0.62 1 0.98 0.81 2

a#PC, number of partial least square regression (PLSR) components; r, correlation coefficient ; RMSECV, root mean square error of
cross-validation; FID, free induction decay; for other abbreviations see Table 2.
bDescribing separation of rape and mustard.



instead of using just a single point or a few points, and they
also demonstrate that simultaneous determination of several
components is possible. The described multivariate methods
used to analyze data from whole NMR relaxation curves
should allow one to address the different classes of protons
that represent water, oil, protein, and carbohydrates.
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FIG. 6.  Plot of predicted vs. measured oil content in dried rapeseeds for
(A) full two components partial least squares regression (PLSR) and (B) two-
component PLSR model based on both rape and mustard seed and all three
treatments. This model is validated by segmented cross-validation.
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